6 research outputs found

    Experimental Results of Concurrent Learning Adaptive Controllers

    Get PDF
    Commonly used Proportional-Integral-Derivative based UAV flight controllers are often seen to provide adequate trajectory-tracking performance only after extensive tuning. The gains of these controllers are tuned to particular platforms, which makes transferring controllers from one UAV to other time-intensive. This paper suggests the use of adaptive controllers in speeding up the process of extracting good control performance from new UAVs. In particular, it is shown that a concurrent learning adaptive controller improves the trajectory tracking performance of a quadrotor with baseline linear controller directly imported from another quadrotors whose inertial characteristics and throttle mapping are very di fferent. Concurrent learning adaptive control uses specifi cally selected and online recorded data concurrently with instantaneous data and is capable of guaranteeing tracking error and weight error convergence without requiring persistency of excitation. Flight-test results are presented on indoor quadrotor platforms operated in MIT's RAVEN environment. These results indicate the feasibility of rapidly developing high-performance UAV controllers by using adaptive control to augment a controller transferred from another UAV with similar control assignment structure.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N000141110688)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 0645960)Boeing Scientific Research Laboratorie

    Fast and Accurate Border Detection in Dermoscopy Images Using Statistical Region Merging

    Get PDF
    Copyright 2007 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.As a result of advances in skin imaging technology and the development of suitable image processing techniques during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of melanoma. Automated border detection is one of the most important steps in this procedure, since the accuracy of the subsequent steps crucially depends on it. In this paper, a fast and unsupervised approach to border detection in dermoscopy images of pigmented skin lesions based on the Statistical Region Merging algorithm is presented. The method is tested on a set of 90 dermoscopy images. The border detection error is quantified by a metric in which a set of dermatologist-determined borders is used as the ground-truth. The proposed method is compared to six state-of-the-art automated methods (optimized histogram thresholding, orientation-sensitive fuzzy c-means, gradient vector flow snakes, dermatologist-like tumor extraction algorithm, meanshift clustering, and the modified JSEG method) and borders determined by a second dermatologist. The results demonstrate that the presented method achieves both fast and accurate border detection in dermoscopy images.http://dx.doi.org/10.1117/12.70907
    corecore